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An integral method for solving problems of nonstationary heat conduction is proposed. This method can be
used for mathematical modeling of the dynamics of heat storage in an unbounded ground mass with the use
of individual heat exchangers positioned upright in the ground or a group of heat exchangers. The influence
of regular, long interruptions in the operation of heat exchangers, which often happen in solar power engi-
neering, on the heat-storage process has been considered. It has been established that this process should be
controlled, individual heat exchangers should be provided with intermediate twenty-four-hours’ heat storage
devices, and the work of individual heat exchangers is not very efficient. The calculations have shown that the
conditions of heat storage become better in the case of group deposition of several heat exchangers.

Introduction. Since the power resources of the depths of the earth are limited, it is necessary to find alterna-
tive energy sources: from waste heat recovery to the conversion of solar energy into heat. If the thermodynamic po-
tential of nonconventional power sources is small, they can be used in systems providing public needs (heating and
hot-water supply) that consume energy very irregularly during the year. In this case, it is necessary to solve the prob-
lem of storage of heat in the summer–autumn period and its subsequent consumption in the winter–spring time. One
of the objects that can be used for energy storage is a natural ground mass with heat- exchangers positioned in it. Dia-
grams of typical heat exchangers are presented in Fig. 1. The heat-exchanger surface Z interacts with the ground. The
heat-exchange surface H with outside diameter R0 is heat-insulated. The bulk of the energy is stored in the volume
V(t), the upper elevation of which h(t) should be lower than the elevation of the mass surface. In the case where U-
shaped heat exchangers are used, their temperature substantially levels off along the height z because of the counter-
flows of one and the same heat-transfer agent in the downward and upward branches. Such an effect will also occur
in a coaxial heat exchanger if the thermal resistance of the separating wall is small. Therefore, it may be assumed that
heat propagates in the ground predominantly in the radial direction and the basic equation of its conservation has the
form
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in the plane, cylindrical, and spherical coordinate systems (depending on the value of i). Representation (1) does not
exclude the possibility of change in the temperature along the height z in accordance with the boundary conditions that
are determined by the regime of operation of the heat exchanger and can change arbitrarily or even be interrupted
when it begins or ceases to operate.

1. Computational Relations. At present, there is no exact analytical solution of (1) for the case of arbitrary
boundary conditions [1]. Therefore, the challenge is to find a system that would be equivalent (or almost equivalent)
to Eq. (1) and its solution that would satisfy the boundary conditions of heat storage. In this case, it is necessary to
take into account the characteristic features of Eq. (1) in the region of determination of functions: first, classical solu-
tions of (1) are found in the form of infinite series leading to cumbersome dependences; second, the region of deter-
mination of functions is infinite; third, in accordance with (1), the velocity of propagation of temperature perturbations
is infinitely high even though it is finite in actual fact. These features can be called the problems of "three infinities."
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The problem of the "first infinity" has been successfully solved in [2] by introduction of a highly exact, universal,
one-parameter interpolation series of functions of temperature distribution in bodies of standard shape, such as a plate,
cylinder, or sphere. This method, going back to the Ka′ rma′n–Pohlhausen ideas [3], can also be used for solving the
second problem and, partially, the third problem in the case where the functions at a finite distance R(t, z) are as-
signed their values at infinity:

r = R0 :   T = T0 ,   
∂T

∂r
 = − 

q0

λm
 ;

r = R :   T = Tm ,   
∂T

∂r
 = 0 ,   

∂2
T
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2

 = 0 .

(2)

The third condition in (2) follows from (1) at ∂Tm
 ⁄ ∂t = 0. Taking into account (2), we may write a universal (com-

mon for i = 1, 2, and 3) one-parameter series of functions:

T − Tm

T0 − Tm
 = (1 − η)3 (1 + 3η − Amη) , (3)

where

η = 
r − R0

R − R0
 ;   Am = 

q0 (R − R0)
λm (T0 − Tm)

 ;   q0 = α0 (Tw − Ti.s) . (4)

From the expression for the parameter Am, we obtain the Biot criterion

Bim = 
α0 (R − R0)

λm
 ,   Am = Bim 

Tw − Ti.s

T0 − Tm
 . (5)

The physical meaning of Am is the ratio between the temperature gradient in the ground at r = R0 and its average
value in the heat-storing mass. The dependence (3) is true for the region 0 ≤ Am ≤ + 4. To derive formulas of the type
of (3) where Am > + 4, we note that

Am = 3 ⇒  
T − Tm

T0 − Tm
 = (1 − η)3 = (1 − η)Am ,   Am = 4 ⇒  

T − Tm

T0 − Tm
 = (1 − η)4 = (1 − η)Am . (6)

Fig. 1. Diagrams of coaxial and U-shaped heat exchangers.
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A recursion continuation of (3) suggests itself:

T − Tm

T0 − Tm
 = (1 − η)Am , (7)

if + 4 < Am ≤ + ∞. Dependence (7) satisfies conditions (2). The temperature distributions calculated by (3) and (7) are
presented in Fig. 2. Since the real temperature distributions in the process of heat storage in a ground mass can be
thought of as smooth and monotone in the direction r, formulas (3) and (7) can be considered as fairly exact if they
strictly satisfy the five conditions at the boundaries of the interpolation region (by analogy with the results of compari-
son of particular exact solutions with analogous dependences in [2]).

According to (3)–(7), to solve the problem considered at given Tm(z) and λm(z) it is necessary to find the fol-
lowing six functions:

Tw (t, z) ,   Ti.s (t, z) ,   T0 (t, z) ,   R (t, z) ,   α0 (t, z) ,   Am (t, z) . (8)

These functions can be determined with the use of:
(1) the equation of conservation of energy of the heat-transfer agent
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 ;
(9)

(2) the equation of heat transfer through the wall of the heat exchanger
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 ; (10)

(3) the equation of change in the temperature of the ground mass at r = R0, following from the basic Eq. (1)
and formulas (3) and (7),
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Fig. 2. Temperature distributions in the ground mass at different values of Am.
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(4) the equation of conservation of the energy stored in the ground Ei(t)
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where (T − Tm) is determined from (3) or (7) and the heat-flux density q0 at r = R0 is determined from the expression
for q0 in (4);

(5) the expression for Am in (4);
(6) the heat-transfer coefficient αi.s on the wall with r = Ri.s
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


i−1

 , (13)

which is determined as a result of the combined solution of the heat and hydrodynamic problems with the use of
known dependences for the heat exchangers considered.

Thus, the system of integral, differential, and algebraic equations is closed and the following boundary condi-
tions are set:

T (0, r) = Tm (z) ,   R (0, z) = R0 ,

T (t, ∞) = Tm (z) ,   T (t, R0) = T0 (t, z) ,   




∂T

∂r



 r=R0

 = − 
q0 (t, z)
λm

(14)

It should be noted that Eq. (11) is true for the conditions at the boundary of the region of determination of
the problem.

2. Analysis of Operation of an Individual Heat Exchanger. As was noted above, the operation of heat ex-
changers can be interrupted in the process of heat storage. These interruptions are especially long in the case of solar
energy storage because of the small duration of a light day (about eight hours) and the existence of clouds. The cal-
culations presented below were done for a conditional ten-day-period cycle including eight hours of operation of solar-
energy collectors during a continuous sequence of eight days and two nonworking days. Three ten-day periods
represent a month and six months represent an interruption in the seasonal heat storage. During the interruptions, the
value of the heat flow changes abruptly — from the maximum to zero and inversely. Since the rate of propagation of
temperature perturbations is high (theoretically infinite), the temperature profile changes almost instantaneously in the
region R0 ≤ r ≤ R in response to an instantaneous change in the quantity Am at R = idem and Ei = idem. When heat
supply is terminated because of the maximum "filling" of the temperature profile at Am = 0 (see Fig. 2), T0 decreases
abruptly and then the stored heat begins to continuously drift (Ei = const) and R(t, z) increases. The rate of change in
T0 and R is determined by Eqs. (11) and (12) at Am = 0. The next introduction of heat into the ground leads to an
equally abrupt increase in Am and T0.

Table 1 presents the conditions of heat storage at its initial stage, calculated at the following parameters of the
interacting systems: a) ground, ρm = 1.84⋅103 kg/m3, λm = 1.42 W/(m⋅K), cm = 1.15⋅103 J/(kg⋅K), and Tm = 10oC; b)
coaxial heat exchanger, R0 = 0.054 m, Ri.s = 0.050 m, ri.s = 0.040, λi.s = 17.5 W/(m⋅K), Z = 50 m, Gw = 5.0 kg/sec,
Re = 0.67⋅105, α0 = 0.86⋅104 W/(m2⋅K), vw = 1.79 m/sec, ξ = 0.02, and, at a constant temperature of the heat-transfer
agent (water), Tw = (Tw,b + Tw,e)/2 = 50oC. The data on the temperature at the input of the heat exchanger Tw,b point
to the gradientlessness of the process along the height z. The algorithm for calculating the initial stage of heat storage,
where T0(0, z) = Tm, is complex and so is not presented here. We only note that the values of the quantity Am are
initially large, then they abruptly decrease and equally abruptly increase. The computer stopped the digital print-out at
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t = 1.715 h since at t > 1.72 h R → ∞ and Am → ∞. These functions will change in a similar way in the case of use
of any other types of heat exchangers and at a substantially lower heat-flow density q0.

This seemingly unexpected result has a clear physical explanation and completely correlates with both the
basic equation (1) and the features of the problem outlined in Sec. 1. Moreover, this result is also important from the
practical standpoint and therefore should be considered in more detail. If the thermodynamic potential is small
(T0 − Tm D 40 oC), at a heat-flow density of q0 D 103 W/m2 and a high thermal resistance of the ground (am D
10−6 m2), it "becomes depleted" practically completely for a short time in a small neighborhood R∗  of the ground mass
adjacent to the heat exchanger. The next introduction of heat into the ground under steady-state conditions (see the last
four rows of the table) where the energy balance is strictly fulfilled (the integral equation (12) determining R was
solved by the iteration method and the relative error of control of the integral invariability did not exceed %10−15) in-
evitably leads to R → ∞ and Am → ∞. Such a value of R conforms well with the infinitely large rate of heat propaga-
tion. To the contrary, the small value of R∗  and its practical invariability are explained by the following facts. Let
T∗ (R∗ ) be determined by the value of ∆T

__
∗  = (T∗  − Tm)/(T0 − Tm) ≈ 10−2–10−3, which corresponds to 99–99.9% of the

T0 − Tm potential "depletion." At Am > 4, in accordance with (4) and (7), we have

η∗  = 1 − ∆T
__
∗
 1 ⁄ Am ,   R∗  = R0 + η∗ Am 

λm (T0 − Tm)
q0

 . (15)

The calculation by the first formula of (15) has shown that the value of the complex η∗ Am remains practically
unchanged at Am > 103 (Fig. 3). Thus, the region of storage of energy with a potential of higher than T∗  = Tm + 10−3

(T0 − Tm) has a radius

R∗  = R0 + 6.9⋅
λm (T0 − Tm)

q0
 .

At λm D 1 W/(m⋅K), T0 − Tm D 40oC, q0 D 1000 W/m2, and R0 D 0.05 m, R∗  D 0.31 m, whereas R > 40 km. The dis-
crepancy between the values of R∗  and R is evident. Expansion of function (7) into the Taylor series and estimation

TABLE 1. Change in the Conditions of Heat Storage at Its Initial Stage

t, h Ti.s, 
oC T0, oC R, m Am q0, W/m2

Ei, 108 J Tw,b, oC

0.100 49.714 49.134 0.109 2.435 2443.9 0.26387 50.992
0.200 49.781 49.338 0.134 2.672 1869.3 0.39252 50.759
0.300 49.810 49.426 0.155 2.920 1621.2 0.49830 50.658
0.400 49.827 49.476 0.176 3.230 1479.8 0.59264 50.601
0.500 49.837 49.507 0.210 3.874 1392.2 0.68010 50.565
0.600 49.844 49.528 0.250 4.641 1331.5 0.76335 50.541
0.700 49.850 49.547 0.293 5.447 1279.0 0.84301 50.519
0.800 49.855 49.562 0.346 6.418 1236.7 0.91978 50.502
0.900 49.860 49.574 0.410 7.616 1201.6 0.99421 50.488
1.000 49.863 49.585 0.492 9.140 1171.9 1.0667 50.476
1.100 49.866 49.594 0.601 11.154 1146.4 1.1374 50.465
1.200 49.869 49.602 0.752 13.950 1124.1 1.2067 50.456
1.300 49.871 49.609 0.976 18.104 1104.5 1.2748 50.448
1.400 49.873 49.615 1.345 24.942 1087.1 1.3417 50.441
1.500 49.875 49.620 2.067 38.344 1071.4 1.4076 50.435
1.600 49.876 49.625 4.131 76.607 1057.3 1.4726 50.429
1.700 49.878 49.630 60.004 1112.700 1044.4 1.5368 50.424
1.705 49.878 49.630 89.124 1652.600 1044.1 1.5384 50.424
1.710 49.878 49.630 172.890 3205.800 1043.8 1.5400 50.424
1.715 49.878 49.630 2802.100 51958.000 1043.5 1.5416 50.424
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of the expansion terms conclusively clarifies the situation. It was established that in the region of the highest tempera-
tures (r < R∗ ) the temperature potential at a fixed point r = const does not change with time at large values of Am
under practically steady-state operating conditions. In other words, the introduced energy with a potential of the order
of 50oC is practically entirely transferred through the high-temperature region and is converted into heat with a poten-
tial close to the potential of the ground mass Tm. To obviate such negative consequences, it is necessary to control the
heat introduction. The control reduces to the restriction of R and the increase of the "filling" of the temperature pro-
file. The latter can be done only by decreasing q0.

It should be noted that the above-described features of the process impose heavy demands on the computa-
tional methods; therefore, it is difficult to directly and exactly solve Eq. (1) by any numerical method, for example,
the method of finite differences.

Figure 4 shows the results of calculation of the controlled operation of the heat exchanger–ground system dur-
ing the above- indicated ten-day-period cycle. The following algorithm of control was constructed within the limits of
problem (9)–(14). At Tw = 50oC = const, on attainment of the value of R = 2.0 m, the boundary of the storage region
R was maintained constant by control of the value of q0 for the purpose of increasing the "filling" of the temperature
profile and, as a consequence, decreasing the parameter Am. The above-indicated ultimate value of R was attained after
1.49 h of operation (Am = 37.04, q0 = 1072.4 W/m2) and was held to the end of the light day (Am = 17.98, q0 =
523.1 W/m2). The termination of the heat supply after 8 h of operation decreased T0 from 49.81 to 11.44oC, and the
16-h "drift" had the following results: R = 2.12 m, T0 = 11.28oC. During the next light day, the storage region was
maintained constant and the next "drift" led to R = 2.23 m and T0 = 11.77oC. This procedure was repeated for eight

Fig. 3. Value of the complex η∗ Am at ∆T
__
∗  equal to 10−3 (curve 1) and 10−2

(curve 2).

Fig. 4. Change in the heat-storage conditions during the first ten-day-period
cycle. F(t) corresponds to Ei, 107 J (1); T0, oC (2); q0, 10 W/m2 (3); Am (4);
R, m (5). t, h.
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days. At the end of the last two days of "pure drift" of the first ten-day period the results were as follows: R = 3.05
m, T0 = 12.24oC. In this manner we calculated the monthly and half-year cycles. The final values were as follows: R
= 9.70 m, T0 = 11.35oC, and Ei = 0.9801⋅1010 J.

The aforesaid leads to the conclusion that interruptions in the operation of a heat exchanger inevitably lead to
a widening of the boundaries of the storage region and, in doing so, prevent the attainment of a sufficient "filling" of
the temperature profile, characterized by Am D 0 and T0 close to Tw. To obtain such characteristics, it is necessary to
provide continuous operation of the heat exchanger, which can be attained with the use of a twenty-four hour heat-
storage device. The capacity of such a heat-storage device should be 0.35 m3/kW in order that it could heat water
from 50 to 90oC for 8 h for the purpose of its subsequent use as an addition to the main heat-transfer agent during
the next 16 h. Figure 5 shows how the conditions of heat storage change with time in the case of such a solution.
After 144 days, they were as follows: T0 = 50.0oC, R = 2.0 m, Am = 0.216, q0 = 6.32 W/m2, and Ei = 0.1122⋅1011

J. These values should be considered as ultimate. It should be noted that the average value of ∆T = (T − Tm) in the
heat-storage ground mass, calculated by (3), cannot exceed 0.2(T0 − Tm) even at a maximum "filling" of the tempera-
ture profile (Am = 0). Under the conditions considered, ∆T = 8oC, whereas (T0 − Tm) = 40oC. Thus, storage of heat in
an infinite ground mass with the use of one heat exchanger is not very efficient.

3. Analysis of Operation of a Group of Heat Exchangers. It would be reasonable to use counter heat flows
to decrease the negative consequences of the spatial unboundedness of the ground mass and increase ∆T to the maxi-
mum value (T0 − Tm). This solution can be realized with the use of a group of k heat exchangers positioned, for ex-
ample, in a rectangular region (k = m × n) with a step L (Fig. 6). Before the heat-storage regions of each of the heat
exchangers come in contact (0 < t ≤ ti.s, R(ti.s) = L/2), they operate independently of each other, and this operation pe-
riod is calculated by the method described in Secs. 1 and 2. Upon the boundaries of these regions coming into con-
tact, combined operation of the heat exchangers begins and, as a result, the heat potential of the main heat-storage
region Vo = L2Z(m − 1)(n − 1) increases. The heat interaction of Vo with the surrounding ground mass is realized
through the buffer subregion Vs adjacent to Vo, the dimensions of which change with time and are characterized by
the parameter Rs(t) (Fig. 7). In what follows, we will assume that the heat loads of each of the k heat exchangers are
equal (q0 = idem). In this case, the value of q0 should be sufficient to provide a given rate of increase in the tem-
perature of Vo with account for the heat flow from Vo through the surface So = 2L[(m − 1)(n − 1)L + (m + n − 2)Z] to
the surrounding ground mass. As the calculations done in Secs. 1 and 2 have shown, individual regions of heat storage
come into contact after one or two hours of operation, when the temperature changes abruptly and the initial thermo-
dynamic potential transforms into the potential of the external ground mass. Therefore, the heat flowing from the pe-
ripheral heat exchangers to the region external relative to Vo is irretrievably lost. We will assume that it functions as
a heat screen along the edges of the parallelepiped Vo. Thus, even at the beginning of the process the heat efficiency
of a group of heat exchangers is

ηh,g = 1 − 
m + n − 1

mn
 . (16)

Fig. 5. Change in the conditions of the controlled heat storage in the case of
continuous operation. F(t) corresponds to Ei, 108 J (1); T0, oC (2); q0, 10
W/m2 (3); Am (4). t, day.
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The value of ηh,g increases with increase in m and n.
Let us construct the basic computational dependences by the method described in Sec. 1. At t > tc the tem-

perature profile in the process of heat transfer from the heat exchangers to the region Vo should encounter conditions
analogous to conditions (2), except for the fourth condition, with a space limitation R = Rc = L/2, which leads to the
expressions

T − Tñ

T0 − Tñ
 = 











(1 − κ)2 (1 + 2κ − Añκ)   at   0 ≤ Añ ≤ 3 ;

(1 − κ)Añ   at   3 < Añ ≤ ∞ ,
(17)

where

κ = 
r − R0

Rñ − R0
 ;   Añ = 

q0 (Rñ − R0)
λm (T0 − Tñ)

 ;

Fig. 6. Plan and section 1–1 of a group of heat- exchangers: 1) boundary of
heat propagation at the instant tc. 2) boundaries of Vo.
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(Rñ − R0)
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 + 
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

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   at   0 ≤ Añ ≤ 3 ;

dT0

dt
 = am 

(Tñ − T0)
(Rñ − R0)

 




Añ (1 − Añ)
(Rñ − R0)

 + 
Añ

R0




   at   3 < Añ ≤ ∞ .

(18)

Heat interaction of the region Vo with the external ground mass occurs in the case where the following conditions are
fulfilled, respectively, at the inner and outer boundaries of the buffer subregion Vs:

u = 0 :   T = Tñ ,   
∂T
∂u

 = 0 ;

u = Rs :   T = Tm ,   
∂T

∂u
 = 0 ,   

∂2
T

∂u
2
 = 0     (u = x, y) .

(19)

The following relation satisfies these conditions:

T − Tm

Tñ − Tm
 = (1 − ψ)3 (1 + 3ψ) ,   ψ = 

u

Rs
     (u = x, y) . (20)

Here, u is measured along the normal to So from So to the region external relative to Vo.
The heat balance of one cell (L × L × Z) of the group per unit height of the cell is

2πR0q0 = L
2ρmcm 

dTñ

dt
 + 

d

dt
 ∫ 
R0

Rñ

2πρmcm (T − Tñ) rdr + 2L 




L

Z
 + 

1

m − 1
 + 

1

n − 1




 qs ,

(21)

Fig. 7. Section 2–2 of the plan (see Fig. 6) and temperature distribution in the
ground mass at t > tc: 1) outer boundary of Vs.
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where qs is the density of the heat flow absorbed by the buffer subregion Vs. The integral in (21) is easily calculated
with the use of distribution (17). It should be emphasized that the heat-balance condition (21) is true for each cell,
including the corner one, since the expression before qs accounts for the contribution of each cell to Vo, which pro-
vides a uniform distribution of Tc over the entire region Vo.

The heat content of the buffer subregion per unit So is determined, in accordance with (20), by the expression

Eis = ∫ 
0

Rs

ρmcm (T − Tm) du = 0.4ρmcm (Tñ − Tm) Rs .
(22)

In the case where Eis remains unchanged,

dRs

dt
 = − 

Rs

(Tñ − Tm)
 
dTñ

dt
 . (23)

At the same time, at Am = 0 we may write, in accordance with (20) and (1), an expression similar to (11):

dTñ

dt
 = − 12am 

(Tñ − Tm)

Rs
2  . (24)

On substitution of (24) into (23) and integration, we obtain

Rs = √ 24am (t − tñ)  . (25)

Since the function Tc changes from Tm to Tc C Tw during a half-year period of heat storage and, accordingly, Eis
changes slowly, expression (25) can be used in the first approximation without any limitations. In this case, differen-
tiation of (22) gives a formula for qs(t):

qs = 0.4ρmcm 



12am 

(Tñ − Tm)
Rs

 + Rs 
dTñ

dt




 . (26)

Substituting (26) into (21), we find a unique dependence of Tc(t) on the density of the heat flow from the heat ex-
changers q0 and, from formula (25), determine the value of Rs(t) in the process of energy introduction.

The temperature profile does not change when heat exchangers cease to operate (q0 = 0) since its "filling" is
maximum in the buffer subregion. The rate of change in Tc(t) is determined by Eq. (24). The condition of invariability
of the stored energy is as follows:

∂
∂t

 







Sî ∫ 

0

Rs

(T − Tm) du + Vî (Tñ − Tm)






 = 0 . (27)

Substitution of (20) into (27), integration with respect to u, and subsequent differentiation with respect to t make it
possible to find, with the use of (24), an equation for Rs(t):

dRs

dt
 = 

12am

Rs
2

 



Rs + 

Vî

0.4Sî





(28)

and, in doing so, complete the determination of the change in the main parameters of this part of the problem.
Figure 8 presents the results of calculation of the heat storage in the ten-day-period regime with the use of a

group of coaxial heat exchangers (m = n = 6, L = 5 m, ηh,g = 0.695) with design dimensions indicated in Sec. 2 in
the case where Tc tends to a finite value equal to D50oC and q0 = 5⋅103 W/m2 = const. It should be noted that Tc
constantly increases despite the fact that it somewhat decreases in the drift periods. The dimension of the buffer subre-
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gion reaches the value of Rs = 6.60 m toward the end of the first ten-day period. Clearly, with increase in Rs, the
energy ratio in Vs and in the main volume Vo changes in favor of Vs. At the beginning of the heat-storage process,
ηo = Eio/Ei = 1, and ηo decreases to 0.654 toward the end of the first ten-day period. It was established that at q0 =
5⋅103 W/m2, the energy introduction is completed (Tc C 50oC) on the fifth day of the 14th ten-day period (Rs = 18.39
m, qs = 208 W/m2, Ei = 0.665⋅1013 J, and ηo = 0.405). Such a value of Tc can be attained toward the end of the
18th ten-day period at a heat flow density of q0 = 3.9⋅103 W/m2 (Rs = 20.85 m, qs = 169.8 W/m2, Ei = 0.688⋅1013

J, ηo = 0.3748). It should be remembered that Rs determines the value of h(t) (see Fig. 1).

CONCLUSIONS

Our numerical investigations undoubtedly point to the fact that heat storage with the use of a group of heat
exchangers is more preferential than heat storage with the use of a single exchanger. The main advantages are as fol-
lows: (a) there is no need to use twenty-four-hour heat-storage devices; (b) there is no need for strong control over
the process; (c) the quality of the stored energy substantially increases since the quantity ηo characterizing its tempera-
ture potential can be 0.4–0.5 or higher, whereas ηo = 0 in the case of heat storage with the use of a single heat ex-
changer.

Our calculations should be considered as an example of realization of the computational method. Both the in-
itial and final values can be different depending on the characteristics of the concrete equipment and the limitations
imposed on the functions. However, the above-mentioned advantages of the "group" solution remain true.

The simple and fairly exact method proposed makes it possible to perform simulations of the dynamics of
ground heat storage with time interruptions in the case where a single heat exchanger is used and in the case where
heat storage is performed continuously with the use of a group of heat exchangers. As follows from the analysis done
in Sec. 2, it is difficult to directly solve Eq. (1) by the method of finite differences.

NOTATION

A, parameter; a, thermal diffusivity, m2/sec; c, specific heat, J/(kg⋅K); Ei, energy, J; G, flow rate of the inter-
mediate heat-transfer agent, kg/sec; H, heat-insulated region of the heat exchangers (Fig. 1), m; h, protective ground
layer (Fig. 1), m; k, number of heat exchangers in a group; L, step, m; m and n, number of heat exchangers in the
rows parallel to the x and y axes; N, power of the external source, W; q, heat-flow density, W/m2; R, radius (linear
dimension) of heat propagation, m; S, area of the heat-transfer surface, m2; T, temperature, oC, K; T

∨
, mean-integral

temperature, oC, K; t, time, sec; V, volume, m3; v, velocity, m/sec; x, y, z, r, coordinates, m; Z, operating height of a
heat exchanger, m; α, heat-transfer coefficient, W/(m2⋅K); λ, heat conduction, W/(m⋅K); η, dimensionless coordinate; ζ,
hydraulic resistance coefficient; ρ, density, kg/m3. Subscripts: 0, parameters at r = R0; w, water; e, end; m, mass; b,

Fig. 8. Change in the conditions of heat storage with the use of a group of
heat exchangers. F(t) corresponds to Ei, 1010 J (1); Tc, 

oC (2); q0, 10 W/m2

(3); ηo⋅10 (4); Rs, m (5). t, h.
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beginning; o, main; c, parameters in the case of combined operation of heat exchangers; h, heat; i.s, on the inner sur-
face of a heat exchanger; g, group of k heat exchangers; s, quantities measured from So; *, particular.
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